If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2-12n-12=0
a = 10; b = -12; c = -12;
Δ = b2-4ac
Δ = -122-4·10·(-12)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{39}}{2*10}=\frac{12-4\sqrt{39}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{39}}{2*10}=\frac{12+4\sqrt{39}}{20} $
| 9+m/9=7/3 | | 5x4+8=88 | | x3–3x2+x+5=0 | | (4.9)*(x^2)-12x=0 | | 9m-2m-4=3 | | 157=-5(5+6x)+4x | | x^2+15x-44=3x | | 59=3w-2(8-6w) | | |2n-6|/6=5 | | 5y-11=45 | | 20x-28=36x | | w/2.5=8 | | (4,9)(x^2)-12x=0 | | 35=7(m+7 | | 4x^2-8=2-1/2(x-8) | | 8x-1=3+4 | | 8+2x=1/2(16+4x) | | -2+4=6x-24 | | -114=6x+3(4+5x | | 2n=83 | | 0.6y+2=1.4y−6 | | -7x-13=29 | | -45=8r+27 | | 5(x^2)-12x=0 | | -10=9p-40 | | -2+4=6(x-4) | | X=2.7x+6.1+3.2x-4.9 | | 6(x-5)=2(2x-2) | | 8x+50=180 | | 5x-12x=0 | | 3/m-2=7/m+2 | | 1/4x-3=1/8x+3 |